Software Collection Project at The Computer History Museum

Bernard L. Peuto Chairman SCC

Why we Are Here

- Software collecting and preservation is critical to preserving the history of the information age.
- The Software Collection Committee help fulfill the software mission of the Computer History Museum which is:
 - "To preserve and present for posterity the artifacts and story of the information age".
- Software collecting and preservation deal with many challenging and unresolved issues.
- Collecting and preserving software will involve and rely on many communities of interested parties.

Initial SCC Charter

- Decide what it means to collect software:
 - Artifact categories
 - Scope (what we do and don't do)
 - Priorities
- Focus on a web accessible archive.
- Pick few test cases and pursue them in depth.
- Establish policy and procedures for ongoing collecting activities.
- Get interested groups and individuals collaborating with us on this preservation initiative.
- Augment the resources needed to fulfill the Museum's mission of preserving software.

Computer History Museum's Software Collection

With thanks to
Kirsten Tashev

Director of Collections & Exhibitions

CHM Software Collection

Samples by Type:

- Operating Systems: Multics, IBM OS/360, DOS, Windows (various vers.), Mac OS (various vers.), Pick, OS/2, Solaris, Free BSD, VMS, NextStep.
- Applications: PC and Mac office productivity apps, Apple II, Xerox Alto, CP/M apps, PC, Mac, Atari, Amiga, games, VisiCalc v.1 Beta, SpaceWar! Lotus 1-2-3 v.1.0, Internet Worm (Morris) source code.
- Tools: LISP, TX-0, PDP-X, C, FORTRAN, COBOL compilers for assorted mainframes and minis.

CHM Software Collection

Samples by Media:

- 400 reels of 9-T tape (mainframe + mini) [60GB]
- 400,000 punch cards [75MB]
- 3,000 5 ¼" floppy disks (PC software) [750MB]
- 500 spools of paper tape (TX-0, Whirlwind, DEC)[10MB]
- 10,000 pages of source code listings [10MB]
- 400 boxes of early PC/Mac software [200GB]
- total: 275GB

Draft Collecting Criteria

New Technology

New paradigm; e.g. visual programming for generating code or logic programming

New Users

Expanded the circle of existing users/created new users,

e.g. BASIC, Windows

Raised the Bar

A definitive improvement on practice or quality

Advanced the field

Program or algorithm that moved the field forward, e.g.

genetic algorithms

Interesting Failure

Never shipped, sold badly, or did not enjoy much usage,

but was important, e.g. GEM

Seminal Inventor

Written by someone who contributed in an important way,

e.g. Bill Joy

Unique

Custom solution to an interesting problem, e.g. Space

shuttle control program

>25 years old

Collected due to rarity, e.g. JOSS

Preservation Steps

Rescue Software Committee determines wish list

and goes after it

Passivate CHM receives and stores in accepted way,

e.g. climate controlled

Conserve Repair deficiencies in media, e.g. broken tape

Transcode Pull bits off original medium

Archive Receive files, assign metadata and store

Software Collection Committee's Work

SCC Work To Date

- SCC in numbers:
 - Started in September 2003
 - October 2003 workshop (co hosted by Grady Booch)
 - 10 meetings of the SCC to date
 - 16 plus attendees per meeting
 - 60 plus names on membership list
- Entering the third phase of our work:
 - First phase: standards and procedures
 - Second phase: test cases
 - Third phase: communities and digital archive

First Phase: Standards and Procedures

- Establish the metadata structures necessary for archiving our software
 - Adopting the Dublin Metadata as our foundation
 - Metadata defines items and relationships
 - Continuing to review our options
 - Will be tested while cataloging our software collection
- Develop software taxonomy
 - Selected UN Standard product and service code
 - http://www.unspsc.org/
 - More appropriate for specific programs & systems
 - Tested on Grady Booch's Classic Software list
 - (http://www.computerhistory.org/cgi-bin/wishlist.cgi)
 - Will be augmented by an exception list as we test it further
 - Manual & Cook Book being done

Describing Items in the Collection:

- Record the minimum amount of information necessary to uniquely identify an item and make it retrievable.
- Use one set of metadata elements to describe all type of items in the collection: hardware, software, documentation, ephemera, and medias.
- Use a standard set of elements to facilitate collaborative sharing among members of the research community, e.g.
 Dublin Core Metadata Element Set www.dublincore.org.

Sample Dublin Core Metadata:

Title

Creator

Subject

Description

Publisher

Contributor

Date

Resource Type

Format

Indentifier

Source

Language

Relation

Coverage

Rights

- Each is a repeating field
- Only use those that are relevant
- Use controlled vocabulary
- Add fields as needed

Metadata:

Author, Designer, Photographer, Title -Artist, Architect, etc. **Creator Subject Description** Publisher, Manufacturer, etc. **Publisher** Contributor **Date Controlled Vocabulary Resource Type** Text **Format** Physical Object Indentifier Image Software Source Sound Language Dataset Relation Interactive Coverage Service **Rights** Collection

Electronic Resources:

Title

Creator

Subject

Description

Publisher

Contributor

Date

Resource Type

Format

Identifier

Source

Language

Relation

Coverage

Rights

Software System Requirements

- Make and model of the computer(s) on which resource is designed to run
- Amount of memory required
- Name of operating system
- Software requirements (including programming language)
- Kind and characteristics of any required or recommended peripherals
- Type of any required or recommended hardware modifications

Example

486/33MHz PC, Macintosh, or Power Macintosh; 8MB RAM; Windows 3.1 (or higher) or System 7.0.1 (or higher); Java-capable Web browser; VGA monitor

CHM Collection

Physical Collection Taxonomy (as an example)

- pre-computer
- calculator
- analog computer
- digital computer
- fixed-application digital computer
- game
- robot
- 1/0
- memory
- interconnect
- component
- software
- test equipment
- ephemeron
- miscellaneous

Taxonomy: Booch vs. UN SPSC

Booch	#	UN SPSC		
operating system	40	Operating system		
language	29	Compiler and decompiler		
application	15	9 categories: Analytical, Business function specific, CAD, Flight control, GUI dev.,		
game	15	Computer game; Action game; Adventure game		
text editing	14	Word processing; Content authoring & editing		
web	11	8 categories: Email, Info. exchange, Networking, Internet browser, Conferencing,		
scientific	6	Analytical or scientific; Expert system		
database	5	Data management and query		
Al	4	Expert system		
-	2	Analytical or scientific; Compiler		
algorithms	2	<none></none>		
utility	2	Security and protection; Transaction security/virus protection		
assembler	1	Development		
cmd. & control	1	Industry specific		
framework	1	Development environment		
laboratory	1	Compiler and decompiler		
music	1	Music or sound editing		
videe editing _F	1	Video creation and editing her 6, 2004		

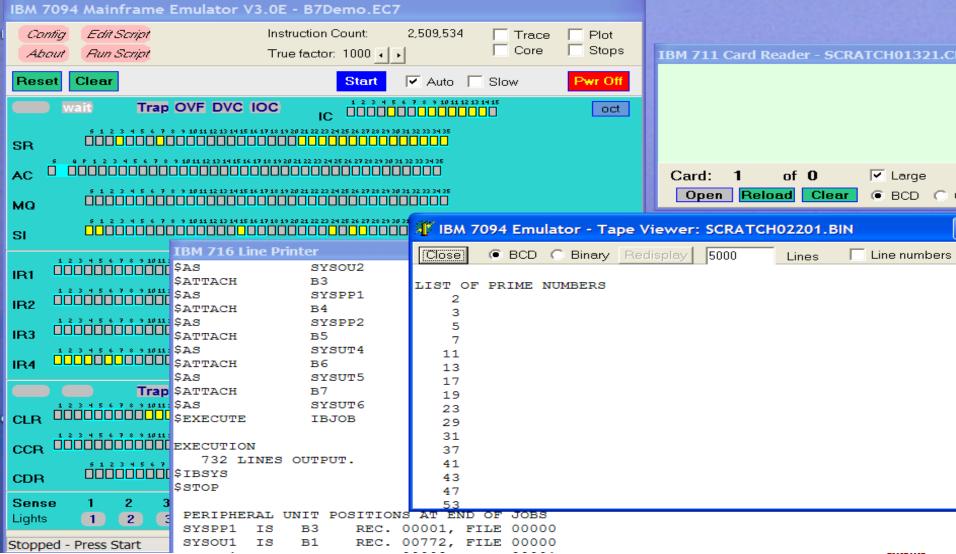
Second Phase: Test Cases

- Determine a list of representative software to test our procedures:
 - Dominated by the availability of interested volunteers.
 - Focus also on cataloguing the existing software collection.
- Current projects:
 - Early Fortran
 - Algol W
 - 1401 Software
 - Multics
 - Page Description Languages

- -- Mac Paint
- -- NLS/Augment
- -- PDP-1 Software
- -- Early CDC Software
- -- Adventure

- Fortran was one of the earliest highlevel languages (designed 1954-1957)
- Its compiler pioneered many optimization techniques
- We've located compiler source code listings (paper and microfiche), and machine-readable source code on the Internet!

- Acknowledgements:
 - Paul Pierce found and read the 7-track
 IBSYS source distribution tape
 - Rob Storey created an IBM 7094 emulator that appears capable of executing the compiler
- For more information, see:
 - http://www.mcjones.org/dustydecks/


	REM	PASS1 / CALLS ON RI	DCIT1 AND MIH	F4A01200
	REM	THIS ROUTINE S	SCANS THE COMPILED INSTRUCTIONS AND	F4A01210
	REM	DIVIDES THE OBJECT	PROGRAM INTO BASIC BLOCKS. A BASIC BLOCK	KF4A01220
	REM	IS A STRETCH OF PRO	OGRAM WITH ONLY ONE ENTRY POINT AND ONE	F4A01230
	REM	EXIT POINT. THE O	UTPUT OF THIS ROUTINE IS BBLIST, A TABLE	F4A01240
	REM	LISTING THE BEGINN:	ING OF EACH BASIC BLOCK (THE LOCATION	F4A01250
	REM	SYMBOL OF THE 1ST	INSTRUCTION OF EACH BASIC BLOCK). A TABLE	EF4A01260
	REM	CALLED DOLIST IS A	LSO COMPILED OF THE BEGINNING AND END OF	F4A01270
	REM	EVERY LOOP IN THE	OBJECT PROGRAM.	F4A01280
	REM	PASS1 ALSO ST	ARTS READING TIFGO, TRAD AND FRET FROM	F4A01290
	REM	TAPE FOR LATER PRO	CESSING.	F4A01300
PASS1	ZAC			F4A01310
	DCT		BE SURE DIV-CHECK IND IS OFF.	F4A01320
	NOP			F4A01330
	SXD	CITCNT, 0	CLEAR DECREMENT OF CIT COUNT.	F4A01340
	LDQ	CITCNT	DIVIDE NO. OF WORDS IN CIT BY	F4A01350
	STQ	ILNGTH	LENGTH OF RESERVED AREA TO	F4A01360
	DVP	CTSPC1	FIND TOP OF LAST RECORD READ.	F4A01370
	DCT			F4A01380
	TSX	ERRM4,IR4	DIVIDE ERROR GO TO DIAGNOSTIC.	F4A01390
	REM		LENGTH OF CITS PLACED IN CITCNT	F4A01400
	REM		BY SEC 3 , LENGTH OF CIT AREA DEFINED	F4A01410
	REM		BY ASSEMBLY.	F4A01420
	ADD	CTRD1	ADD BOTTOM OF AREA TO GET LAST LOADED	F4A01430

	REM T/	TRANSFER TABLE	(USED BY CF000).	F1A17510
T	PZE	C0100,,2	DO.	F1A17520
	PZE	C0200,,4	GO TO.	F1A17530
	PZE	C0400,,14	IF (SENSE SWITCH.	F1A17540
	PZE	C0500,,13	IF (SENSE LIGHT.	F1A17550
	PZE	C0600,,13	IF DIVIDE CHECK.	F1A17560
	PZE	C0700,,21	IF ACCUMULATOR OVERFLOW.	F1A17570
	PZE	C0700,,18	IF QUOTIENT OVERFLOW.	F1A17580
	PZE	C0300,,0	IF.	F1A17590
	PZE	C1000,,6	ASSIGN.	F1A17600
	PZE	C1300,,4	STOP.	F1A17610
	PZE	C0900,,5	PAUSE.	F1A17620
	PZE	C1100,,10	SENSE LIGHT.	F1A17630
	MZE	C1200,,9	DIMENSION.	F1A17640
	MZE	C1500,,11	EQUIVALENCE.	F1A17650
	MZE	C1400,,9	FREQUENCY.	F1A17660
	PZE	C1600,,8	CONTINUE.	F1A17670
	PZE	TSB,,8	READ TAPE.	F1A17680
	PZE	TSH,,13	READ INPUT TAPE.	F1A17690
	PZE	DRS,,8	READ DRUM.	F1A17700
	PZE	CSH,,4	READ.	F1A17710
	PZE	STB,,9	WRITE TAPE.	F1A17720
	PZE	STH,,15	WRITE OUTPUT TAPE.	F1A17730
	PZE	SDR,,9	WRITE DRUM.	F1A17740
	PZE	SPH,,5	PRINT.	F1A17750

22 COMPUTER HISTORY

SCC VCF

November 6, 2004

23 COMPUTER

Mac Paint Work

Third Phase: Communities and Digital Archive

- Establish significant collaborations with a selected group of interested parties.
- Prototype the software digital archive.
- Finish the cataloguing our software collection
 - Heavily dependent on finding resources.
- An important Challenge:
 - Developing the web tools and procedures that would allow to open the committee to a larger group of volunteers.

